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using radiation from periodic perturbations as described by Horn

et al. Further tests are continuing with the fabrication of similar

modulators with reduced dimensions for millimeter-wave applica-

tions.
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An Expansion of the Terakado Solution with an

Application

H. J. RIBLET, FELLOW,IEEE

,@fract —The capacitance of a concentric, symmetrical, rectangular

coaxial line in which the enter conductor differs from the inner conductor

by a factor of two is expanded to the eleventh power in exp [ – r w/fr].
Here w is the width of the inner conductor and b is the height of the enter

condnctor. Approximate vafues obtained from this expansion agree with

exact values within 0.06 percent for w/b >.2.

This expansion permits the determination of the limiting value, as

w/b ~ cc, of the error in an approximation for the characteristic imped-

ance of those rectangular coaxiaf lines in which the thickness of the inner

conduct is half the height of the outer conductor. It is then shown how this

information can be used to improve the accuracy with which the character-

istic impedance of rectangular coaxial lines may be approximated in the

general case.

I. INTRODUCTION

Terakado’ [1] has made the perceptive observation that the

transformation

l–cn(Z, k)
(1)

‘= sn(Z, k)

which maps the interior of a rectangle, shown in Fig. 1, of width

2 K, and height 2 K’ centered at the origin of the Z-plane onto the

unit circle of the z-plane, also maps the L-shaped portion of the

rectangle which remains after the lower right-hand cross-hatched

quarter of the rectangle has been removed onto a sector of the

unit circle. The interior of this sector is mapped by the successive

transformations

w=z2/3 (2)
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Fig. 1. Z-Plane

and

()~=;W+l
w

(3)

on to the lower half of the w-plane. Thus, the transformations ( 1),

(2), and (3) map an L-shaped region of the Z-plane on to the

lower half w-plane and permit the exact determination of the

capacitance of a class of symmetrical rectangular coaxial trans-

mission lines. The capacitance of these structures is given by

4K’(ko)

co= K(ko)
(4)

where

~:= [1 -cos(n/3-2a/3)][1 -cos(2rx/3)]

[1 +cos(n/3-2rr/3)][1 +cos(2a/3)]
(5)

and

cos(ry)=k. (6)

In the familiar w,s, t,b notation of Fig. 1, this family of

rectangular coaxial lines may be defined by t/b= 0.5 and w/b=

s/b. It is a one parameter family of structures. It depends only

on the parameter k determined by the requirement that

K(k) _ 2W

K’(k) – b “
(7)

It is the immediate object of this paper to present the expan-

sion of the capacitance Co of (4) in powers of exp ( – n w/b), and

to show that this expansion is sufficiently accurate for most

purposes. This paper complements papers of Riblet [2]–[4] which

present expansions of the capacitances of other well-known rect-

angular structures directly in terms of their dimensions. Other

objectives will be discussed in Section III.

II. Trm I?,XPANSION

It is essential to introduce the nome q’ of Jacobi’s theory of

theta functions. By definition, q’= exp ( – nK/K’) so that from

(7)

q’=exp(–2nw/b). (8)

For large values of w/b, q’ and k’ are small so that it is

convenient to replace (6) by

sin(a) =k’. (9)

This permits an expansion of a in powers of k’, which is

convergent for small values of k’

~= k,+ k’3 / Sk’i
6 40 ‘“”””

(lo)
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TABLE I

~cT AND APPROXIMATECO

w/b

! .15 .2 .3 ,4

exacf 242 1757 14354 1147827 10.469020
—— ——— ——— ———

amro.. 23.6 17.51 14346 11.47614 10469018

Moreover, from [5, p. 241]

@= 2q11/4 l+q’*+q’6+q’’*+ . . .

l+2q’+2q’4+2q’9+ ..- “
(11)

If p’ is defined as @,p’ = exp[– Tw/b], and (11) is substituted

in (10), a convergent expansion for a in terms of exp [ – n w/b] is

obtained. This expansion has been carried as far as

24 32 52~= 4pl _ 7pf3 + ~pfs – .-p’~+ TP’9

_@ ,,,
~~P +;p’’q +.... (12)

The substitution of (12) in (5) to obtain ,kO is simplified by

replacing (5) with

k&I = 3cos(2a/3)+fisin (2a/3)

[

6 11 + ~cos(2a/3)+ ysin(2a/3) [1 +cos(2a/3)]

(13)

If go = exp( – nK’(lcO)/IC(kO)), from [6, p. 486]

while from (4)

Co=–~ln(qo). (15)

The desired expansion then results from the substitution of

(12) in (13) to find k~, followed by the substitution of k~ in (14)

to find go and finally the substitution of go in (15) to obtain Co.

The substitution of (12) in (13) results in an expansion of k:

which converges for sufficiently large values of w/b. Moreover,

k~ ~ 1 as w/b ~ m. The substitution of (13) in (14) also gives an

expansion which converges for sufficiently large values of w/b;

but go ~ O as w/b -+ co so that the expansion obtained when (14)

is substituted in (15) contains a logarithmic singularity. When

this zero factor is removed the remainder of the expansion is

convergent.

These substitutions have been carried out in closed form, for

reasons to be seen, as far as exp ( – 4n w/b) and then in decimal

form. It has been found that

co 2@

{

160 I
~ ++ 31n(3)+; &+%ti—= —

4

+ 2432
~fius + ~u4}

+ 1.61663u5 + 1.5476806 + 1.39760u7+ 1.38050~8

+ 1.4086709+ 1.41762ti10 + 1.53648ui’ + . . . (16)

where co= exp( – n w/b).

Table I, in which the values in the upper row are exact and the

values in the lower row are obtained from (16), indicates that the

error in (16) is rapidly decreasing function of w/b. The error

which is 2.5 percent for w\b = 0.1 reduces to 0.34 percent when

w/b = 0.15 while seven place agreement is found when w/b = 0.4.

III. ‘flm APPLICATION

It is interesting and useful to evaluate the difference between

this solution and the approximations introduced by Barrett [7]

and Cohn [8] and Riblet [9]. If ACfO denotes the difference

between the approximate fringing capacitance Cl, and the exact

fringing capacitance CIO, then the total capacitance Co of a

rectangular coaxial line 1s given by

co=4{w/(b– t)+ CjO– ACfO} (17)

Riblet [3, eq. 12] has given w expansion of C/Oin tie desired
form. When t= b/2, j3 = 2; and if o = exp (– m/b) =

exp(– nw/b)

+ 1.70267u5 + 1.6967106 + 1.6398/m7 + . . . . (18)

Then, if(17) is solved for ACfO, when ~ and C~Oare replaced by

their expansions in terms of u

“fo = = 729
L %)4 +0.0860405 +0.14903Q6 +0.24221w7 + . . . .

(19)

If A’CfO is defined by the equation

co= c. +4(cj0– c; – A’C”O, (20)

where C, is the capacitance of the slab-line structure for the same

values oft/b and w/( b – t), and Cfi is the limiting value of CJ6as
s/b -+ m, then A’CJO can also be expanded in tis form since

Wblet has given the required expansion for C. in [2, eq. 20]. In

the present case, b = 2t and a = 0.5. Then

~=~+~31n(3) –~u4–0.024467u8+ . . . . (21)

When (20) is solved for A’CfO and the expansions for Co, C, and

C~Oare substituted in the result

A’CfO= 0.08604a5 +0.14903u6 +0.2422107+ .,. (22)

since, by definition, Cl is the limit of C~Oas 0-0.

It is clear that A’C,O < ACfO in this case, as expected, but of

greater interest is the fact that (19) and (22) indicate that the

approximation of the total capacitance of rectangular coaxial line

in terms of parallel plate, slab-line, and fringing capacitance has a

fundamental analytical basis. Moreover, since the expansion for

Co is known to converge, the fact that the expansions for CjOad
C, when properly combined have the same first five terms strongly

suggests that they are also convergent.

The information provided by the Terakado solution permits

one to plot curves of A’CfOexp (277w/( b – t)) for the case, t/b=

0.5, which allow a significant improvement in the accuracy of the

improved approximation for the characteristic impedance of rect-

angular coaxial line recently presented by Riblet [91.Table II
shows a number of exact values on these curves. The values in the

first column when the imer conductor is a zero thickness, vertical

strip may be obtained from Oberhettinger and Magnus [10, pp.

62–65] while their limiting values as s/b+ co can be determined

from Riblet [4, pp. 662–663]. The values in the box bordered by

double lines were obtained from the exact case discussed by

Bergmann [11, pp. 3 19–33 1]. The values in the right-hand region

are exact values obtained from the Terakado solution which were
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❑ Terakodo

I t/b=,5

A

.,
I I 1 ,

0012,3 ,45 ,67.8 ,9
w/( b-t)

F,g. 2. Curves of A’CfOexp(Zn W/(~ – t))

TABLE II

EXACT VALUES OF A’Cf; exp(2nw/( b – f)) FOR t\b = 05
w/( b–r)

,/b 0 605.-7 3 ,5,-, 727 E-2 504 E-I I 2 4 6 8 I >,

1 +798539 4798529 3988

2 2,3+ 2,24 1646

3 ,,,6 1057 07972

4 06473 05368 04450

*
5 04031 02712 02712

6 02636 01752

7 0(782 01175

8 0,233 00808,

9 008663 005666

$0 006[55 00+017

..s/,
>1 1325.”””b . 2159 e-2’’s’b + W,e”””b 08s04. . ,490.

.,”,/b . ~423e .3.,/b

obtained by direct numericaf computation. The limiting values

shown below are given by (22) after multiplication by exp (2 T w/

(b - t))= exp(4ns/b).

Curves plotted on the basis of this data are shown m Fig. 2

where the points denoted by squares are provided by the Terakado

solution while those shown by the triangles depend on Bergmarm.

For s/b = 0.1 and 0.2, these values were used to determine the

slope of the curves at w/( b – t) = O. They show that the majority

of the change in the curves occurs for w/( b – t) <0.2. Thus, the

Terakado results determine the curves over the greater part of

their extent. For s/b = 0.5, the Bergmann and Terakado results

coincide.

These curves or other curves of the same family which can be

plotted by the same method always provide a more accurate

approximation of A’Cf ~ and thus of CO than was given in [9]. In

the first place, the curves of Fig. 2 confirm the argument made in

[9] that the A’CfOexp[2~ w/( b – t)] are decreasing functions of

s/b and t/b. In fact, a comparison of these curves with those of

[9, fig. 2] shows that, for a given value of s/b, the curve for

t/b = 0.5 has a value about one half the value of the correspond-

ing curve for t/b = O. Thus, for t/b >0.5, the use of these curves

as an upper limit, instead of those for t/b= O as was done in [9],

will reduce the error in the approximation by a factor of two.

It is noteworthy that all of these curves, both for t/b= 0.5 and

t/b = O have their maximum value when w/( b – i) = O. It is

clear that this is not a characteristic which is peculiar to the case

when t/b = O and maybe reasonably expected to hold for all t/b

t/b = O

: I I I I I I I I

00 1 2 3 4 6 7 8

w/(11-t)

Fig. 3. Curves of A’CfOexp(2rw/(b – t))for s/h= d/s.

since it undoubtedly results from the rapid change in the field

distributions as the width of the inner conductor approaches zero.

How this information, together with the curves of Fig. 2, can

be used to improve the approximation when O < t/b< 0.5 will be

illustrated by considering the example where w/( b – t) =1, s/b

= 4/3 and t/b= 1/3. This was the case selected by Cmzan and

Garver [12, p. 495] to illustrate the use of their graphs to

determine the characteristic impedance of rectangular coaxial

line. In Fig. 3, three curves of A’C’Oexp (27 w/( b – t)) are plotted

for the case when s/b = 4/3. The upper curve was plotted using

exact values for the case t/b= O, while the lower curve was

drawn between the end points determined from the two expan-

sions on the bottom line of Table II for s/b = 4/3. Also plotted

is the one known point on the curve for which s/b= 4/3 and

t/b = 1/3, namely the point at w/( b – t) = O, where it’s value is

0.003374. It has been argued that the quantity A’CfOexp [2n w/( b

– t)] for the case s/b = 4/3 and t/b = 1/3 has its maximum

value at w/( b – t) = O. Moreover, since these are decreasing

functions of t/b, this curve must lie above the corresponding

curve for i’/b = 0.5. In fact, it must lie entirely above the value

001340 given by the terms in the lower right-hand comer of Table

11. It can certainly be approximated by the horizontal line drawn

halfway between its maximum value at w/( b – t)= O and the

minimum value of the curve for t/b = 0.5. Thus

A’CfOexp(2nw/(b – t)) = 0.002357+0.001017 (23)

for s/b = 4/3, t/b= 1/3, and all values of w/(b – t). For the

case when w/(b – t) = 1, A’CfO = (4.402 ~ 1.900) 10 – 6. Then’

CO= 7.4540386 18+ 0.000007597. (24)

Of course it is not surprising that this approximation should be

very accurate for a value of w/( b – t) as large as 1. Consider the

case where w/( b – t)= 0.1. Then A’CfO = 0.001257 t 0.000543,

and

CO= 3.76456 tO.00217 (25)

so that the characteristic impedance can be determined with an

accuracy better than 0.06 percent even for this small value of

w/(b – t).

IU3FEREIWM

[1] R Terakado, “The characteristic impedance of rectangular coaxial line

with ratm 2:1 of outer-to-inner conductor side length,” IEEE Trans.

Mlcrowaoe Theory Tech , vol. MTT-24, pp. 124-125, Feb. 1976.

1It now appears that the approximate capacitance given in [9, p. 66] should

have been 74540562.



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES vOL. 30, NO. 11, NOVEMBER1982 2039

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

H, J. Riblet, “An approximation for the characteristic impedance of

shielded-slab line,” IEEE Trans. Microwave Theoiy Tech., vol. MTT-27,
pp. 557-559, June 1979.
H. J. Riblet, “An expansion for the fringing capacitance,” IEEE Trans.

Microwave Theoiy Tech., vol. MTT-28, pp. 265-267, Mar. 1980,

H. J. Riblet, ‘<Two limiting values of the capacitance of symmetrical

rectangular coaxiaf strip transmission line,” IEEE Trans. Micrrrwaoe

Theory Tech,, vol. MTT-29, pp. 661-666, July 1981.

H Hancock, Theory of Elliptic Functions. New York: Dover, 1958

E. T. Whittaker and G. N. Watson, A Course of Modern Analysis,

Cambridge: University Press, 1940.

R. M. Barrett, “Etched sheets serve as microwave components: Electron-

ics, vol. 25, pp. 114-118, June 1952.

S. B. Cohn, “Characteristic Impedance of the shielded-strip transmission

Ime,” Trans. IRE, MTT-2, pp. 52-55, July 1954.

H, J. Riblet, “Upper limits on the error of an improved approximatioii

for the characteristic impedance of rectangular coaxial line;’ IEEE

Trans. Microwave Theo~ Tech., vol. MTT-28, pp. 666-667, June 1980.

F. Oberhettinger and W. Mangus, A nwendung Der Elliptischen Funktionen

in Physik und Technik. Berlin, Germany: Springer, 1949,
S. Bergmann, “ Uber die Berechrmng des magnetischen Feldes ein unpha-
sen Transformator,” Z. Angew, Math. Mech., vol. 5, pp. 319-331, 1925.

0. R. CruZan and R V. Gamer, “Characteristic impedance of rectangu-

lm coaxia.1 transrmssion lines,” IEEE Trans. Microwaoe Theory Tech.,
vol. M’fT- 12, pp. 488–495, Sept. 1964.

Radiation Resistance in Radial Transducer

E. SAWADO

I. INTRODUCTION

The purpose of the present paper is to give an intuitive

explanation for the characteristics of radial wave and to demon-

strate that this mode has no cutoff below the critical frequency
~ = ~ ( BH) 1/z, where o is the angular frequency, y = 1.76X 107

((oe see)- 1 in CGS unit), B = PO(H + M) is the magnetic flux

density, H the magnetic field, M the saturation magnetization.

Ganguly and Webb, and others [1]–[3] presented an initial theory

and experiments for magnetostatic surface wave transducers.

They obtained some of the useful results for resistance of a

microstrip due to radiation. Previous investigations have calcu-

lated dispersion characteristics [4] and characteristic impedance

of composite microstrip slab structure [5]. These investigations

conclude that microstnp excitation of magnetostatic surface wave

has proven particularly convenient, because of strong coupling

from electromagnetic waves to magnetostatic waves. It is easy to

see that the lowest operating frequency of the Ganguly type delay

line is yH. Below this cutoff, no modes can exist. In view of the

above, investigation of radial wave type delay line should pro-

duce useful developments in low frequency microwave (0.5 to 1.0

GHz) applications.

The system analyzed in this report is shown in Fig, 1. A

transducer in the form of a fine wire is excited with an RF
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Fig. 1, RadiaJ waveguide and an infinitely long wire as exciting antenna.

current which generate radial volume waves within the structure.

The dc magnetic field is directed along the z axis and also the

fine wire is situated parallel to the z axis. This mode propagates

perpendicular to the magnetic biasing fields, guided by two

parallel surfaces, and its energy is distributed within the medium.

II. BASIC THEORY

Coupled differential equations for the z component of electric

and magnetic fields are [6], [7].

(

a2
Vi+j-j+u%poh

)
e. + COpOIC/K~hz = O (1)

(

a2
)

v; +(1/p. — + o%po h=+ ucK/&e==o

(3Z*

(2)

where p. and c are the vacuum permeability and dielectric

constant, respectively, V ~ is a differential operator = 02/ dx2 +

d2/6’y2, and p ~ is the effective permeability given by

PL=(#J2-~2)/w (3)

where p and N are a diagonal and a nondiagonal component of

the relative permeability tensor. These equations become two

independent differential equations, when the fields are indepen-

dent of Z( d/dz = O). The assumption that ( d/dz = O) is true

only under two conditions: 1) when there are no energy leaks into

the free space, and 2) when the thickness of the ferrite sheet is

small compared with wavelength A. We now express them in

cylindrical coordinates

(:+(”+)+ o’e~o~)ez=o ‘4)

(:+(”%) +@2’@z=0 ‘5)

From (4), we have a solution for a radial argument in terms of the

Bessel function of order O and the Hankel function of the second

kinds of order O

e,=aO.lO(ku) +boH~2)(ku). (6)

Substituting (6) into (4), we have

k2=02t~O(P2– K2)/P. (7)

This relation gives a dispersion of this system. The boundary

condition on the z component of electric field requires that

e==O when a=a. (8)

The z component of the electric field satisfying the boundary
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