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using radiation from periodic perturbations as described by Horn
et al. Further tests are continuing with the fabrication of similar
modulators with reduced dimensions for millimeter-wave applica-
tions.
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An Expansion of the Terakado Solution with an
Application

H. J. RIBLET, FELLOW, IEEE

Abstract —The capacitance of a concentric, symmetrical, rectangular
coaxial line in which the outer conductor differs from the inner conductor
by a factor of two is expanded to the eleventh power in exp{— 7w/b].
Here w is the width of the inner conductor and b is the height of the outer
conductor. Approximate values obtained from this expansion agree with
exact values within 0.06 percent for w/b > .2.

This expansion permits the determination of the limiting value, as
w/b — oo, of the error in an approximation for the characteristic imped-
ance of those rectangular coaxial lines in which the thickness of the inner
conduct is half the height of the outer conductor. It is then shown how this
information can be used to improve the accuracy with which the character-
istic impedance of rectangular coaxial lines may be approximated in the
general case.

I. INTRODUCTION

Terakado [1] has made the perceptive observation that the
transformation

_1-en(Z,k)
~ sn(Z,k)

which maps the interior of a rectangle, shown in Fig. 1, of width
2K, and height 2 K’ centered at the origin of the Z-plane onto the
unit circle of the z-plane, also maps the L-shaped portion of the
rectangle which remains after the lower right-hand cross-hatched
quarter of the rectangle has been removed onto a sector of the
unit circle. The interior of this sector is mapped by the successive
transformations

(M

W=z

)
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on to the lower half of the w-plane. Thus, the transformations (1),
(2), and (3) map an L-shaped region of the Z-plane on to the
lower half w-plane and permit the exact determination of the
capacitance of a class of symmetrical rectangular coaxial trans-
mission lines. The capacitance of these structures is given by

_ 4K'(ko)
CO—T(/;)—)— 4)
where
2 — [1—cos(n/3—2a/3)][1—cos(2a/3)] (s)
%" [1+cos(m/3—2a/3)][1+cos(2e/3)]
and

cos(a) = k. (6)

In the familiar w,s, ¢, b notation of Fig. 1, this family of
rectangular coaxial lines may be defined by ¢ /b= 0.5 and w/b =
s/b. It is a one parameter family of structures. It depends only
on the parameter k determined by the requirement that

K(k) 2w
K'(k) b Q)

It is the immediate object of this paper to present the expan-
sion of the capacitance C; of (4) in powers of exp(— 7w/b), and
to show that this expansion is sufficiently accurate for most
purposes. This paper complements papers of Riblet [2]-[4] which
present expansions of the capacitances of other well-known rect-
angular structures directly in terms of their dimensions. Other
objectives will be discussed in Section III.

II. THE EXPANSION

It is essential to introduce the nome ¢’ of Jacobi’s theory of
theta functions. By definition, ¢’ = exp(— #K /K”) so that from
Q)

g =exp(—27w/b). (3)
For large values of w/b, ¢’ and k' are small so that it is
convenient to replace (6) by
sin(a)=k". )
This permits an expansion of a in powers of k’, which is
convergent for small values of £’
k13 3 k/5
+

a=k+" "4

+ .- (10)
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TABLEI
EXACT AND APPROXIMATE Cy
w/b
] 15 2 3 4
exact 242 1757 14354 1147827 | 10469020
approx. 23.6 1751 14 34; 1 _n;?;: -_IO_46_90_I; ]
Moreover, from [5, p. 241]
1+ q%+ g+ g%+ -
r 2 1/4 q q q ( 1 1)

1+2q +2q"‘+2q’9+

If p’ is defined as /¢’ , p’ = exp[ — mw/b], and (11) is substituted
in (10), a convergent expansion for « in terms of exp[ — «w/b] is
obtained. This expansion has been carried as far as

16 2 . 32, 52,
a=4p'——=p + T p - p 5 p”

48 | 56 ,
__1,11_'_131)13+

(12)

The substitution of (12) in (5) to obtain k, is simplified by
replacing (5) with

3cos(2a/3)+V3sin(2a/3)

kir=
1+%cos(2a/3)+ —‘/2isin(2a/3)][l+cos(2a/3)]

(13)

If g4 =exp(— 7K'(ky)/K(ky)), from [6, p. 486]
=_1. 1_‘/‘6 _1_ l_m (14)

P72 Ry 2 1+ykp
while from (4)
4

Go= ‘;ln(%)- (15)

The desired expansion then results from the substitution of
(12) in (13) to find k), followed by the substitution of &k, in (14)
to find ¢, and finally the substitution of g, in (15) to obtain .

The substitution of (12) in (13) results in an expansion of kj
which converges for sufficiently large values of w/b. Moreover,
k{—1 as w/b — oo. The substitution of (13) in (14) also gives an
expansion which converges for sufficiently large values of w/b;
but g, — 0 as w/b — oo so that the expansion obtained when (14)
is substituted in (15) contains a logarithmic singularity. When
this zero factor is removed the remainder of the expansion is
convergent.

These substitutions have been carried out in closed form, for
reasons to be seen, as far as exp(—4#w/b) and then in decimal
form. It has been found that

Co_2Ze {31n(3)+—\/—w+

G_20 1 160 ,
2432 5 3808 4}

4 b
729 ©
+1.61663w” +1.54768° +1.39760w” + 1.38050 w®
+1.40867w° +1.417620'® +1.536480'! + - - -

where w = exp(— 7w/b).
Table I, in which the values in the upper row are exact and the
values in the lower row are obtained from (16), indicates that the

(16)
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error in (16) is rapidly decreasing function of w/b. The error
which is 2.5 percent for w/b = 0.1 reduces to 0.34 percent when
w/b = 0.15 while seven place agreement is found when w/b = 0.4.

III. THE APPLICATION

It is interesting and useful to evaluate the difference between
this solution and the approximations introduced by Barrett [7]
and Cohn [8] and Riblet [9]. If AC, denotes the difference
between the approximate fringing capacitance /, and the exact
fringing capacitance C;, then the total capacitance C, of a
rectangular coaxial line is given by

Co=Hw/(b—1)+C}—AC, ). (17)

Riblet [3, eq. 12] has given an expansion of (7 in the desired
form. When r=5/2, B=2; and if w=exp(—ms/b)=

exp(—nw/b)
, 32 160 W4 2432 5. 3872 o
o= {3ln(3)+ Botage’+ g 3e }

+1.70267w® + 1.69671° + 1.6398 /0o’ + - - - (18)

Then, if (17) is solved for AC;, when C, and (7 are replaced by
their expansions in terms of w

AC}0=—1~ %w +0.08604 ° +0.14903 ® +0.242210” + -
(19)
If A’Cy, is defined by the equation
Co=C,+4(C/,— G/~ A'C,) (20)

where C, is the capacitance of the slab-line structure for the same
values of ¢ /b and w/(b — £), and C; is the limiting value of C, as
s/b— o, then A’C; can also be expanded in this form since
Riblet has given the required expansion for C, in [2, eq. 20]. In
the present case, b =27 and a = 0.5. Then '

C 2w

T——b_‘i— 31 (3) (21) .

‘When (20) is solved for A’Cfo and the expansions for C,, C, and
G, are substituted in the result

A'C;, = 0.086040° +0.149036° +0.24221a” + - -

729 ¥ 4 —0.0244670° + -

(22)

since, by definition, (7 is the limit of C as w — 0.

It is clear that A’Cf0< ACfO in this case, as expected, but of
greater interest is the fact that (19) and (22) indicate that the
approximation of the total capacitance of rectangular coaxial line
in terms of parallel plate, slab-line, and fringing capacitance has a
fundamental analytical basis. Moreover, since the expansion for
C, is known to converge, the fact that the expansions for ¢} and
C, when properly combined have the same first five terms strongly
suggests that they are also convergent.

The information provided by the Terakado solution permits
one to plot curves of A’C, exp(27w/(b — 1)) for the case, t /b=
0.5, which allow a significant improvement in the accuracy of the
improved approximation for the characteristic impedance of rect-
angular coaxial line recently presented by Riblet [9]. Table 1I
shows a number of exact values on these curves. The values in the
first column when the inner conductor is a zero thickness, vertical
strip may be obtained from Oberhettinger and Magnus [10, pp.
62—65] while their limiting values as s /b — oo can be determined
from Riblet [4, pp. 662-663]. The values in the box bordered by
double lines were obtained from the exact case discussed by
Bergmann [11, pp. 319-331]. The values in the right-hand region
are exact values obtained from the Terakado solution which were
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Fig. 2. Curves of 8’Cy exp(2nw/(b —1)).
TABLE IT
EXACT VALUES OF A'C; -exp(2aw/(b— 1)) FOR1/b=05
w/(b—1)
s/b Q 603E-7 | 315E-3] 72VE-2] 504E-] i 2 4 6 8 I =]
| (4798539 (14798529 3988
2 |2i34 2124 1646
3116 1057 Q7972
4106473 05368 04450
5104031 02712 02712
6 | 02636 01752
7 {01782 onrs
8 101233 008089
9| 00BEE3 005666
1 Q| 0086155 004017
/b -2ws/b -3ws/b -ws/b -2ws/b -3mws/b
>1 1325 + 2159e + 3127 08604e + 1480e + 2423e

obtained by direct numerical computation. The limiting values
shown below are given by (22) after multiplication by exp(27w/
(b—1t))=exp(4ns/b).

Curves plotted on the basis of this data are shown in Fig. 2
where the points denoted by squares are provided by the Terakado
solution while those shown by the triangles depend on Bergmann.
For s/b=0.1 and 0.2, these values were used to determine the
slope of the curves at w/(b — ) = 0. They show that the majority
of the change in the curves occurs for w/(b —t) < 0.2. Thus, the
Terakado results determine the curves over the greater part of
their extent. For 5 /b = 0.5, the Bergmann and Terakado results
coincide. )

These curves or other curves of the same family which can be
plotted by the same method always provide a more accurate
approximation of A’C, and thus of C, than was given in [9]. In
the first place, the curves of Fig. 2 confirm the argument made in
[9] that the A’C, exp[2mw/(b - t)] are decreasing functions of
s/band t/b. In fact, a comparison of these curves with those of
[9, fig. 2] shows that, for a given value of s/b, the curve for
t/b = 0.5 has a value about one half the value of the correspond-
ing curve for ¢ /b= 0. Thus, for ¢t /b > 0.5, the use of these curves
as an upper limit, instead of those for ¢ /b = 0 as was done in [9],
will reduce the error in the approximation by a factor of two.

It is noteworthy that all of these curves, both for ¢ /b = 0.5 and
t/b=0 have their maximum value when w/(b—¢)=0. It is
clear that this is not a characteristic which is peculiar to the case
when ¢ /b = 0 and may be reasonably expected to hold for all ¢ /5
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Fig. 3. Curves of A'Cy exp(2aw/(b—1)) for s/b=4/3.

since it undoubtedly results from the rapid change in the field
distributions as the width of the inner conductor approaches zero.

How this information, together with the curves of Fig. 2, can
be used to improve the approximation when 0 < ¢ /b < 0.5 will be
illustrated by considering the example where w/(b—¢)=1, s/b
=4/3 and t/b=1/3. This was the case selected by Cruzan and
Garver [12, p. 495] to illustrate the use of their graphs to
determine the characteristic impedance of rectangular coaxial
line. In Fig. 3, three curves of A’C; exp(27w/(b — 1)) are plotted
for the case when s /b = 4/3. The upper curve was plotted using
exact values for the case t/b=0, while the lower curve was
drawn between the end points determined from the two expan-
sions on the bottom line of Table II for s /b = 4/3. Also plotted
is the one known point on the curve for which s/b=4/3 and
t/b=1/3, namely the point at w/(b — ¢) = 0, where it’s value is
0.003374. It has been argued that the quantity A’C; exp[27w/(b
— )] for the case s/b=4/3 and ¢t/b=1/3 has its maximum
value at w/(b—1t)=0. Morcover, since these are decreasing
functions of f/b, this curve must lie above the corresponding
curve for t /b= 0.5. In fact, it must lie entirely above the value
001340 given by the terms in the lower right-hand corner of Table
IL. It can certainly be approximated by the horizontal line drawn
halfway between its maximum value at w/(b—1t)=0 and the
minimum value of the curve for ¢ /b = 0.5. Thus

A'C exp (2mw/(b — 1)) = 0.002357£0.001017  (23)

for s/b=4/3, t/b=1/3, and all values of w/(b —t). For the
case when w/(b — 1) =1, A’C, = (4.402+1.900) 10 ~ 6. Then'

Cy = 7.454038618 +0.000007597. (24)

Of course it is not surprising that this approximation should be
very accurate for a value of w/(b — ¢) as large as 1. Consider the

case where w/(b—t)=0.1. Then A’C, =0.001257+0.000543,
and

Cy = 3.76456 +0.00217 (25)

so that the characteristic impedance can be determined with an
accuracy better than 0.06 percent even for this small value of

w/(b—1¢).
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Radiation Resistance in Radial Transducer
E. SAWADO

I. INTRODUCTION

The purpose of the present paper is to give an intuitive
explanation for the characteristics of radial wave and to demon-
strate that this mode has no cutoff below the critical frequency
w=7y(BH)'/?, where w is the angular frequency, y =1.76 X 10’
((oe sec)™! in CGS unit), B =po(H + M) is the magnetic flux
density, H the magnetic field, M the saturation magnetization.
Ganguly and Webb, and others [1]-[3] presented an initial theory
and experiments for magnetostatic surface wave transducers.
They obtained some of the useful results for resistance of a
microstrip due to radiation. Previous investigations have calcu-
lated dispersion characteristics [4] and characteristic impedance

of composite microstrip slab structure [5]. These investigations

conclude that microstrip excitation of magnetostatic surface wave
has proven particularly convenient, because of strong coupling
from electromagnetic waves to magnetostatic waves. It is easy to
see that the lowest operating frequency of the Ganguly type delay
line is yH. Below this cutoff, no modes can exist. In view of the
above, investigation of radial wave type delay line should pro-
duce useful developments in low frequency microwave (0.5 to 1.0
GHz) applications.

The system analyzed in this report is shown in Fig. 1. A
transducer in the form of a fine wire is excited with an RF
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Fig. 1. Radial waveguide and an infinitely long wire as exciting antenna.

current which generate radial volume waves within the structure.
The dc magnetic field is directed along the z axis and also the
fine wire is situated parallel to the z axis. This mode propagates
perpendicular to the magnetic biasing fields, guided by two
parallel surfaces, and its energy is distributed within the medium.

II. BASIC THEORY

Coupled differential equations for the z component of electric
and magpnetic fields are [6], [7].

2

d d
(Vi + P + wlepop )ez +opok/uah, =0 (1)

3? 9
(Vi+(1/p.)g+wzep,o)hz+wcx/ub—zez=() )

where p, and € are the vacuum permeability and dielectric
constant, respectively, V2 is a differential operator = 3°/9x? +
0%/3y?, and p , is the effective permeability given by

po=(p—«*)/p 3)

where p and « are a diagonal and a nondiagonal component of °
the relative permeability tensor. These equations become two

independent differential equations, when the fields are indepen-

dent of z(d/dz=0). The assumption that (3/dz=0) is true

only under two conditions: 1) when there are no energy leaks into

the free space, and 2) when the thickness of the ferrite sheet is

small compared with wavelength A. We now express them in

cylindrical coordinates

18 3\, » ~
(;%(o%)+w€p0ul)ez—0
1 d d s _
(0 aa(oaa)+w€p,0)hz—-0. (5)

From (4), we have a solution for a radial argument in terms of the
Bessel function of order 0 and the Hankel function of the second
kinds of order 0

e, =agJy(ka)+ b HP (ko).
Substituting (6) into (4), we have
k2 = wepq(p? — k%) /p. (7)

This relation gives a dispersion of this system. The boundary
condition on the z component of electric field requires that

4)

(6)

(®)

The z component of the electric field satisfying the boundary

e,=0 wheno=a.
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